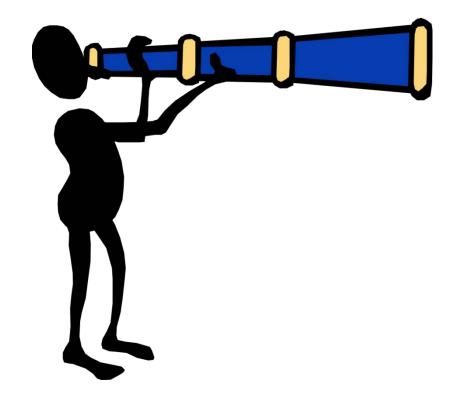
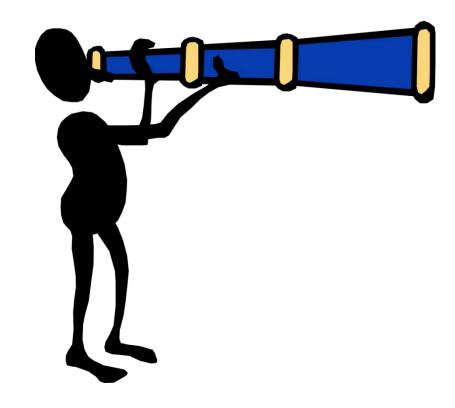
Scientific Method



- Observation
- Problem/question
- Hypothesis
- Experiment
- Data Collection
- analysis
- Conclusion

Observations


- Gathered through your senses
- A scientist notices something in their natural world

Problem

Your observations raise a question you want to answer, or a problem you want to solve


Examples:


Hypothesis

- A suggested solution to the problem.
- Must be testable
- Sometimes written as If...Then... statements
- Predicts an outcome

An example of a hypothesis might be that...

Experiment

A procedure to test the hypothesis.

Experiment

Variable factor in the
experiment
that is being
tested

Experiment

A good or "valid" experiment will only have ONE variable (Thing being tested) changed at a time!

Controls and Variables

Scientific Experiments Follow Rules

An experimenter changes one factor and observes or measures what happens.

The Control

- The experimenter makes a special effort to keep other factors constant so that they will not effect the outcome.
- Those factors are called controls.

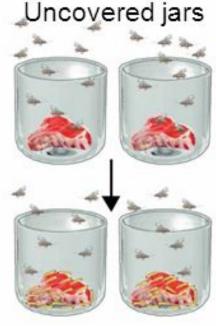
What is the Purpose of a Control?

- Controls are NOT being tested
- Controls are used for COMPARISON

Other Variables

- The factor that is changed is known as the independent variable.
- The factor that is measured or observed is called the dependent variable or responding variable

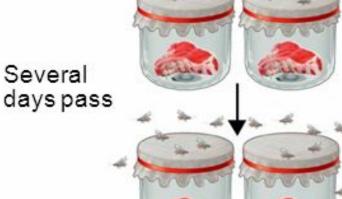
Redi's Experiment on Spontaneous Generation


HYPOTHESIS: Flies produce maggots.

PROCEDURE

Controlled Variables:

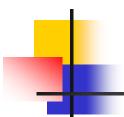
Manipulated Variables:


Responding Variable:

Several

Maggots appear

Covered jars



No maggots appear

CONCLUSION: Maggots form only when flies come in contact with meat. Spontaneous generation of maggots did not occur.

Remember: To be a Valid Experiment:

- Two groups are required --the control & experimental groups
- There should be only one variable

Data

- Results of the experiment
- May be quantitative (numbers) or qualitative

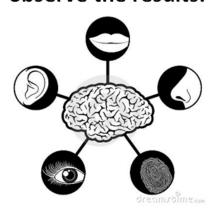
Qualitative

Quantitative


Like Easy Awkward _{Slow} Squirrel Efficient How 1,127 3.76% Confusing

23,406 2m32s 76.8% \$45,849

€12.75


Quantitative Data

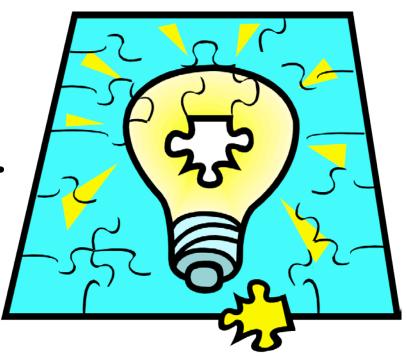
are made with instruments such as rulers, balances, graduated cylinders, beakers, and thermometers. These results are measurable. (numbers)

Qualitative Data

use your senses to observe the results.



Data analysis


- Must be organized
- Can be organized into charts, tables, or graphs

Conclusion

The answer to the hypothesis based on the data obtained from the experiment

How a theory develops

- A theory: a broad and extensively tested explanation of why experiments give certain results.
- 5. Scientific Law: a concise statement that summarizes the results of many observations and experiments.
- *Laws state what happen, theories explain why they happen.

- 1) Identify a Problem
- 2) State Observations about the problem
- 3) Form a Hypothesis about the problem (if...then...)
- 4) Design an Experiment to test the hypothesis
- 5) Collect Data
- 6) Form a Conclusion

