Cellular Respiration

Chapter 9-1

Why do we eat?

Raw materials for cell growth
 Energy

Measuring energy in food Calorie – unit of energy in food Calorimeter – measures heat given off when food is burned

Homemade calorimeter

Energy in Food

Glucose

- main source of food energy
- Used up quickly
- Starch Glycogen
 - Chain of glucose molecules
 - Broken down for Long term energy

Lipid

Excess carbohydrates become lipids

energy storage

Glucose vs. ATP Glucose is the source of our energy ATP is the form of energy our cells use Sun → Glucose → ATP

Cellular respiration

Releases energy by breaking down glucose in the presence of oxygen
Gradual
C₆H₁₂O₆ + 6O₂ → 6CO₂ + 6H₂O + ATP
Food energy → chemical energy
3 stages

Glycolysis

Happens in Cytoplasm Glucose is split Produces 2 molecules of pyruvic acid Uses 2 ATP Makes 4 ATP Net profit = 2 ATP \Rightarrow 2NAD+ \rightarrow 2NADH Carries electrons Transfers energy to electron transport chain

Glycolysis

Without Oxygen

Glycolysis stops when all NAD+ get filled up with electrons Anaerobic fermentation -Alcoholic Fermentation Yeast Makes bread rise ◆Pyruvic acid + NADH → alcohol + CO_2 + NAD⁺ Lactic Acid Fermentation Most other organisms Makes your muscles burn ◆Pyruvic acid + NADH \rightarrow lactic acid + NAD⁺

Lactic Acid Fermentation

In the presence of oxygen
Cellular Respiration continues
Energy from glucose now stored in pyruvic acid
Requires oxygen -- aerobic

Krebs Cycle

◆ Pyruvic acid enters mitochondria
 ◆ Pyruvic acid → CO₂ + citric acid
 ◆ Citric acid → CO₂ + ATP+ NADH + FADH₂

High energy electron carriers

Krebs Cycle

Electron Transport Chain

 Eukaryotes – inner folded membrane of mitochondria

Prokaryotes – within cell membrane

Electron Transport

- NADH + FADH₂ each deliver 2 electrons to transport chain Electrons pass down the chain to oxygen $\diamond O + 2H^+ + 2e^- \rightarrow H_2O$ Energy used to pump H⁺ ions inside mitochondria in between folds H⁺ ions escape through ATP synthase - Spins
 - $ADP \rightarrow ATP$

Electron Transport Chain

Totals from 1 molecule of Glucose

Glycolysis – 2 ATP Krebs Cycle -2 ATP - Carbon Dioxide electron transport -32 ATP -Water -Heat Total ATP = 36 ATP

Energy and Exercise

- Energy sources
 - Stored ATP: enough for a few seconds of exercise
 - Lactic acid fermentation:
 - produces enough ATP to last about 90 seconds
 - Creates build up of lactic acid
 - Lactic acid must be flushed out of the cells by a chemical pathway requiring extra oxygen
 - Cellular Respiration:
 - Produces long term energy
 - Releases energy more slowly than fermentation
 - Uses glucose or glycogen (glucose polymer)
 - Can also break down fat and protein into intermediate molecules that can enter the Krebs cycle